Acta Cryst. (1969). B25, 2665
The average crystal structure of $\boldsymbol{\gamma}-\mathbf{N a}_{2} \mathbf{C O}_{3}$. By G.C.Dubbeldam and P.M.de Wolff, Delft University of Technology, Werkgroep Microstructuur, Lorentzweg 1, Delft, Netherlands

(Received 27 June 1969)

Abstract

$\gamma-\mathrm{Na}_{2} \mathrm{CO}_{3}$ is a deformed version of the hexagonal α-phase structure. This was shown by successful refinement of a corresponding trial structure (symmetry $C 2 / m$) to $R=12.8 \%$ for 313 independent reflexions, the indices $h k l$ being integers. The satellite reflexions which correspond to the actual modulated structure were not included in this refinement, so that it refers to the average structure only. The main feature of the modulation is apparent from the fact that the average structure contains two CO_{3} ions with half atoms. The modulation can, accordingly, be described as an ordered distribution of anions over two orientations.

Though it is one of the most common compounds, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is still a white patch on the map of crystal structures. The present analysis shows a possible cause for this remarkable fact: the room temperature or γ-phase possesses a modulation anomaly, so unexpected in such a chemically trivial compound that it may have baffled early workers and just been forgotten afterwards.

At room temperature, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ crystallizes in a C centred monoclinic lattice with the following parameters $\left(23^{\circ} \mathrm{C}\right)$:

$$
a=8 \cdot 90, b=5 \cdot 24, c=6 \cdot 04 \AA, \beta=101 \cdot 2^{\circ} ; Z=4
$$

This phase was termed the γ-phase by Brouns, Visser \& de Wolff (1964; 'BVW'). It shows up to 6 sharp satellites for each normal reflexion, corresponding to rows in the reciprocal lattice. The row containing the normal reflexion $h k l$ is given by
(i)

$$
\begin{equation*}
\mathbf{h}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+m \mathbf{p}^{*} \tag{1}
\end{equation*}
$$

where m is a small integer and $\mathbf{p}^{*}=0.182 \mathbf{a}^{*}+0.318 \mathbf{c}^{*}$.
Further properties of these satellites are:
(ii) With increasing temperature, the fractional components of \mathbf{p} decrease continuously from the above values to, e.g. $\mathbf{p}^{*}=0 \cdot 154 \mathbf{a}^{*}+0.286 \mathbf{c}^{*}$ at $300^{\circ} \mathrm{C}$.

Table 1. Atomic coordinates for $\gamma-\mathrm{Na}_{2} \mathrm{CO}_{3}$
First three columns: final averaged structure.
Last three columns: $\alpha-\mathrm{Na}_{2} \mathrm{CO}_{3}$ on orthohexagonal axes.

		x	y	z	x	y	z
$4 \times \frac{1}{2} \mathrm{Na}(1)$	g	0.000	0.018	0.000	0.000	0.000	$0 \cdot 000$
$4 \times \frac{1}{2} \mathrm{Na}(2)$	h	0.000	$0 \cdot 022$	$0 \cdot 500$	0.000	$0 \cdot 000$	$0 \cdot 500$
$8 \times \frac{1}{2} \mathrm{Na}(3)$	j	$0 \cdot 172$	0.544	0.749	$0 \cdot 167$	$0 \cdot 500$	0.750
$8 \times \frac{1}{2} \mathrm{C}$	j	$0 \cdot 163$	0.488	0.251	$0 \cdot 167$	$0 \cdot 500$	$0 \cdot 250$
$8 \times \frac{1}{2} \mathrm{O}(1)$	j	$0 \cdot 123$	0.255	$0 \cdot 314$	$0 \cdot 101$	$0 \cdot 300$	$0 \cdot 250$
$8 \times \frac{1}{2} \mathrm{O}(2)$	j	0.291	0.491	$0 \cdot 173$	$0 \cdot 300$	0.500	0.250
$8 \times \frac{1}{2} \mathrm{O}(3)$	j	0.079	0.676	$0 \cdot 255$	$0 \cdot 101$	$0 \cdot 700$	$0 \cdot 250$

Table 2. Measured and calculated structure factors
The columns are L, F_{0}, F_{c}.

		\therefore		$\begin{gathered} 326 \\ 323 \\ 34 \end{gathered}$	$\begin{array}{r} 35 \\ 312 \\ -36 \end{array}$	3	$\begin{aligned} & \because \\ & \vdots! \end{aligned}$	3	$\begin{aligned} & -5 \\ & -7 \end{aligned}$	$\begin{aligned} & \because \\ & \because \\ & \hline \end{aligned}$	$\begin{array}{r} 71 \\ 12 \\ -1 \end{array}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 55 \\ 11 \\ 30 \end{gathered}$	$\begin{array}{r} 216 \\ 19 \\ -\quad 37 \end{array}$:	$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 22 \\ 122 \end{array}$	$\begin{array}{r} 9 \\ -12: \end{array}$		6	L	1	$\begin{aligned} & 29 \\ & 14 \\ & \vdots \end{aligned}$	$\begin{gathered} 24 \\ 8 \\ 84 \end{gathered}$	¢		13% -17 -87
				:C.	-7\%	;	13	:			-13		1 c	- 63	8	44	42	4	157	145	- 8	43	45						
;	\%		\%	1	:24		$3 ;$	- 2	3	\because	29	5	4	:1	?	13	15	5	49	55	- 7	12	17		z	-		53	$:$
:	8:	27.9	-	3	21	'0	-	-	\%	1.	1 1)		1	!	5	11	- 5	\%	1.4		-	12	-						
ϵ	10			11	1					$1:$	1.				4	87	80	8	37	-	-4	218	-:	- ${ }_{1}$	27	- ${ }_{\text {cj }}$	-		85 37
\%	11	15	:	r:	\therefore	-6	43	23	$=$:	f	- 6	ij1	9	3		- 15				- 3	10	19	- 3	27	34	- í	is	- ${ }^{37}$
\bigcirc	2.	33				,	i3	?				- 5	9	- ',	2	21	- 17		z 2	-	-2	105	-113	- 2		2	- 3		-47
				63	-	4	41	45		: 1	\therefore	- 4	32	31	1	23	23				-1	10	-25	-1	12	- 20	-	100	118
	2.3	L				3	26	- 26				-3	${ }^{\text {a }}$	${ }^{9}$	0	152	138	- 6	7.	81	,	212	211	c	33	4.1	- 1	21	19
			-3	45	29	-2	21	17	- ?	34	-3	- 2	135	122		11	0	- 5	27	- 31	1	10	16				0	31	34
-10	27	29	7	26	- 33	1	:1	22	-6	92	100	1	70	-. 18	2	37	- 33	-4	13	- 1	2	27	17		1	L	1	30	23
-9	13	3	- 6	10	13	0	50	$4{ }^{3}$	- 5	65	72.	0	131	118	3	12	- 16	- 3	148	151	3	12	- 1				2	112	116
8	23	21	- 5	24	31	1	11	- 5	-4	68	59	1	114	103	4	69	69	-2	291	307	4	60	64	-6	51	38	3	24	- 23
- 7	11	6	- 4	140	131	2	49	- 54	-3	56	-63	2	188	126 -78				0	8 C	-73				- 5	43	4.9	4	i3	-19
- 6	36 31	- 27	- ${ }_{-1}$	114	10 -18	4	13	- 6	- ${ }^{-1}$	213	-209	3	67	-78			L	1	192	181		8	L	-4	89	99	5	14	
-4	157	169	0	180	174	5	14	5		23	25	5	11	35	5	2ϵ	34	$\stackrel{2}{3}$	227 29	228 -46	- 8		30	-3	35	-49	6		63
3	4	so	1	99	126	6	33	31	1	102	89	6	$\epsilon 3$	6		12	10	4	52	49	- 7	12	5	- 1	2	18		7	L
- 2	14.	124	2	97	23				3	?	19				4	25	1s	5	12	- 3	-6	i_{1}	26	,	18	- 7			
-1	57	60	4	86	93	12	0	L	1	34.	- 35		71	:		12	f	6	4.1	39	- 5	12	,	2	127	13.4	6		4.3
0	4	-88	¢	11	- 16				5	31	-44					53	54				-4	12	8		37	37			
1	159	-156	7	13	- 5	- 3	39	47	¢	103	103	- ${ }^{\text {- }}$	29	22		12	- 17		42	L	- 3	12	- 19	4	10	19	-		
2	379	366	7	: 4	18	- 7	14	13				- 7	12	- 24	0	12	- 8				-2	165	132	5	33	-43	- 3	12	20
3	86	79	2	31	32	- 6	37	- 36		31	:	-6	28	27	1	12	10	-6	103	103	-1	¢ 9	35	6	62	50	-2	130	118
4	8	- 9				- 5	13	- 10				- 5	10	19	2	ϵ_{1}	64	- 5	19	-27	,	12	- 19				-1		- 11
5	23 69	- 18			L	$\begin{array}{r} -4 \\ -3 \end{array}$	$\begin{aligned} & 73 \\ & 40 \end{aligned}$	$\begin{aligned} & 74 \\ & 20 \end{aligned}$	-8	$\begin{aligned} & \varepsilon 1 \\ & 23 \end{aligned}$	$\begin{aligned} & 78 \\ & 28 \end{aligned}$	$\begin{aligned} & -4 \\ & -3 \end{aligned}$	$\begin{gathered} 59 \\ 9 \end{gathered}$	61 -12				-4 -3		- ?			- 21 73		3	:	0	1.5 12	-29 -13
			- 7	2	30	- ${ }^{\text {c }}$	13	- 6	-6	11	- 29	- 2	121	-114	13	1	L	-3 -2	120	- ${ }^{2}$	2	74	73				1	112	-13
	40	:	-6	79	91	,	12	- 17	- 5	56	-68	- 1	2%	32		33	25	-1	80	60		0 ?	L	- 5	12	- 6			
			- 5	54	- 71	-	56	4	- 4	173	191	0	9	14	5	15	0	-	187	174				-4	112	126		93	L
- 8	24		-4	31	- 38	1	13	11	- 3	79	92	1	53	-62		14	- 5	1	82	-73	-6	52	49	-2	7	36			
-7	11	-28	- 3	64	84	2	13	- 5	- 2	64	46	2	113	105		14	- 10	2	41	38	- 5	39	Le	-1	79	71	-4		43
-6	97	89	-?	167	16.7	4	1.1	145	- 1	29	- 36	3	48	60	?	55	45	3	31	36	- 4	14	0	0	158	165	- 3	13	15
- 5	86	:05	-1	30	- 4					30	-31 -57	$\stackrel{1}{4}$	23	- 28				4	41	54	-3	29	- 39	1	105	-97	- 2	13	1
-4	26	- 20 -740	?	13	$\stackrel{\text { \% }}{ }$	1.		-	?	5.	- ${ }^{\text {51 }}$	'	? 3	- $\begin{array}{r}18 \\ 18\end{array}$		¢	L	${ }_{6}^{5}$	¢	- 4	-2	4.1 14	$5 ?$	$\stackrel{2}{2}$	28	- 13	-1	${ }^{13}$	11

(iii) The ($h 0 l$) plane $k=0$ is free from satellites.

These findings, reported without comment in BVW, can easily be translated into real space:

Re (i). Such a diffraction image is the well-known result of a modulation of the structure. A modulation can occur as a substitutional type, such as described recently by Jamieson, de Fontaine \& Abrahams (1969). In $\mathrm{Na}_{2} \mathrm{CO}_{3}$, however, such a defect seems hardly possible. The only remaining possibility is that of a displacement modulation. This means that the coordinates of the j th atom in the unit cell q, r, s, (taken from a fixed origin) can be written:

$$
x_{j q r s}=\bar{x}_{j}+x_{j}^{d}\left(w_{q r s}\right)
$$

with similar equations for y and z. Here \bar{x}_{j} is a fixed average coordinate value, whereas the displacement component x_{d}^{d} is a periodic function, averaging zero and with period 1 , of

$$
w_{q r s}=\mathbf{p}^{*} .(q \mathbf{a}+r \mathbf{b}+s \mathbf{c}) .
$$

Thus planes of constant displacement \bar{x}_{j}^{d} are perpendicular to \mathbf{p}^{*}, and repeat at a distance $1 /\left|p^{*}\right|$ which in the present case is $16 \cdot 3 \AA$.

Re (ii). Description of the structure as normal (unmodulated) based on some super-cell cannot be exact, since such a description is in conflict with the continuous change of \mathbf{p}^{*} with temperature.

Re (iii). The displacements are parallel to b, since the b-projection is unmodulated. This means that the displacements must be parallel to the p^{*}-wave front. In terms of the modulation function it means $x^{d}=z^{d}=0$.

The present analysis is based upon normal reflexions [$m=0$ in equation (1)].

The resulting electron density - provided phases are assigned correctly - is the average of the actual distribution over all unit cells. Hence we expect each atom to show up in this distribution as a peak elongated in the \mathbf{y} direction, or even split up into two peaks, depending on the amplitude and wave form of its modulation function y_{j}^{*}. Accordingly, we started by looking mainly at the b-projection, which can be expected to be unambiguous.

As a first trial structure we used a model derived from the hexagonal α-form (BVW; structure derived by Bijk \& Wisser, 1969) because the γ-form, after loosing its satellites at $360^{\circ} \mathrm{C}$, transforms into the α-form at $489^{\circ} \mathrm{C}$ without discontinuities in the cell parameters. The coordinates of the α-form with respect to orthohexagonal axes are given in Table 1. The space group C2 was arbitrarily chosen. Though eventually disproved (see below) it gave the correct symmetry in the ($h 0 l$) projection; a later trial with Cm did not lead to a good refinement.

The main uncertainty was the orientation of the CO_{3} ions. Using step-wise refinement (Bhuiya \& Stanley, 1963) successively for the Eulerian angles of this group and for the other coordinates, a reasonable agreement between F_{c} and F_{0} (at this stage from integrated precession photographs) was obtained, first for the $h 0 l$ reflexions, then also for the $\hbar 1 l$ reflexions. Higher k values were not used at this stage because the strength of the satellites in high k layers is such that to aim at a high accuracy of y coordinates is pointless until an explanation of the satellites has been found. Further refinements were based on integrated Weissenberg photographs (taken with Mo $K \alpha$ radiation) of a crystal rotating about the b axis. The largest dimension of the crystal was $\sim 0.5 \mathrm{~mm}$; no absorption correction was applied. Atomic form factors were taken from Moore (1963), and the least-
squares refinement program used a single isotropic temperature factor. This led to a disagreement index $R=\Sigma\left|F_{o}-\left|F_{c}\right|\right| / \Sigma F_{o}=17 \%$ for $102 h 0 l$ reflexions and $84 h 1 l$ reflexions including those not observed. The corresponding structure is shown in Fig. 1.

Though all distances are reasonable - including those within a single CO_{3} ion - the $h 1 l$ reflexions showed some large discrepancies. Moreoever, in all these cases $\operatorname{Im}\left(F_{c}\right)$ was large and $\left|F_{c}\right|>F_{o}$. Since the imaginary part arises from the departure of the structure from $C 2 / m$ symmetry (mainly caused by the two O atoms almost coinciding in the b projection) and since the good agreement for $h 0 l$ reflexions shows that projection to be essentially correct, the solution is clear: there must be two alternative orientations [related by an (010) mirror plane] for each CO_{3} ion. This hypothesis is corroborated by the drop in the R index to 14.35% for the same reflexions as before, just by doubling the anion in the way indicated. The last refinements (of the y coordinates only) have accordingly been performed in the space group $C 2 / m$. The R index became $12 \cdot 8 \%$ using $102 \mathrm{~h} 0 l, 84 \mathrm{hll}$, 72 h 2 l and 55 h 3 l reflexions. For these refinements a program of the Bhuiya-Stanley type has been used; the layer scale factors were obtained from a least-squares program. The results are shown in Tables 1 and 2.

Fig.1. Trial structure with $C 2$ symmetry. Above: projection along b; below: projection along c. Dots: \mathbf{C}; large circles: O ; small circles: $\mathrm{Na} . \mathrm{Na}$ and O atoms at or near $y=0$ are open, those at or near $y=\frac{1}{2}$ are hatched in the b projection. The average structure with symmetry $C 2 / m$ is obtained from this Figure by superposing it with its mirror image formed by mirror planes m at the levels indicated in the lower Figure.

Fig.2. Schematic projection of the anions: (a) in the actual modulated structure; (b) in the average structure. The projection direction is perpendicular to p^{*} and b, and the $C-O$ (2) direction is supposed to be parallel to it so that C and $O(2)$ coincide in the centre of each projected anion. As seen from Fig. 1, this is not quite true.

The presence of two 'half' carbonate ions at once makes clear the main feature of the modulation: the satellites of the γ-phase allow us to explain the double atoms of the anion as the split atoms representing an atom in the average electron density distribution of the structure, as discussed above. If there had been no satellites, the double anion would have had to have been ascribed to disorder in the anion orientation (this is most probably the situation for the β-phase above $360^{\circ} \mathrm{C}$). Therefore the modulation can also be described as a complete ordering of the anion orientations.

The atoms $O(1)$ and $O(3)$ have a large modulation amplitude, and their modulation function y^{d} is roughly a square wave. A very schematic projection of the anions in a direction perpendicular to \mathbf{p}^{*} and \mathbf{b} (Fig.2) illustrates this situation. The complete determination of the modulation amplitudes and wave forms of all atoms in the unit cell will require an elaborate analysis of the satellite intensities. So
far, attempts at such an analysis have shown that the order of magnitude of these intensities does agree with the proposed model.

We wish to thank Mr W. J. A. M. Peterse for the use of his least-squares program and Mr J. W. Visser for the use of the Bhuyia-Stanley program.

References

Bhuiya, A. K. \& Stanley, E. (1963). Acta Cryst. 16, 981. Bijk, P. \& Visser, J. W. (1969). Private communication. Brouns, E., Visser, J. W. \& de Wolff, P. M. (1964). Acta Cryst. 17, 614.
Jamieson, P. B., de Fontaine, D. \& Abrahams, S. C. (1969). J. Appl. Cryst. 2, 24.

Moore, F. H. (1963). Acta Cryst. 16, 1169.

